|
In organic chemistry, the term 2-norbornyl cation (equivalent with 2-bicyclo-()heptyl cation) describes one of the three carbocations formed from derivatives of norbornane. Though 1-norbornyl and 7-norbornyl cations have been studied, the most extensive studies and vigorous debates have been centered on the exact structure of the 2-norbornyl cation. The 2-norbornyl cation has been formed from a variety of norbornane derivatives and reagents. First reports of its formation and reactivity published by Saul Winstein sparked controversy over the nature of its bonding, as he invoked a three-center two-electron bond to explain the stereoselectivity of the resulting product. Herbert C. Brown challenged this assertion on the grounds that classical resonance structures could explain the stereospecificity without needing to adapt a new perspective of bonding. Evidence of the non-classical nature of the 2-norbornyl cation grew over the course of several decades, mainly through spectroscopic data gathered using methods such as Nuclear magnetic resonance (NMR). Crystallographic confirmation of its non-classical nature did not come until quite recently.〔 The nature of bonding in the 2-norbornyl cation incorporated many new ideas into the field’s understanding of chemical bonds. Similarities can be seen between this cation and others, such as boranes. ==Theory== The nature of bonding in the 2-norbornyl cation was the center of a vigorous, well-known debate in the chemistry community through the middle of the twentieth century. While the majority of chemists believed that a three-center two-electron bond best depicted its ground state electronic structure, others argued that all data concerning the 2-norbornyl cation could be explained by depicting it as a rapidly equilibrating pair of cations. At the height of the debate, all chemists agreed that the delocalized picture of electron bonding could be applied to the 2-norbornyl cation. But this did not answer the fundamental question on which the debate hinged. Researchers continued to search for novel ways to determine whether the three-centered delocalized picture described a low-energy transition state (saddle point on the multidimensional potential energy surface) or a potential energy minimum in its own right.〔 Proponents of the “classical” picture believed that the system was best described by a double-well potential with a very low barrier, while those in the “non-classical” camp envisioned the delocalized electronic state to describe a single potential energy well.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「2-Norbornyl cation」の詳細全文を読む スポンサード リンク
|